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ABSTRACT
A general method is presented for constructing a location estimator which

is asymptotically efficient at any two different location-scale families of
symmetric distributions as well as at an appropriately defined class of
distributions lying in between. The method works by embedding the two
families in a cqmprehensive parametriq model and identifying the estimator
with the MLE. The case when the‘families are.Normal and Double exponential is

examined in detail.
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SIGNIFICANCE AND EXPLANATION

This paper considers the following probl:= in the estimation of the
center of a symmetric probability distribution. Suppose the statistician has
a model F which he hopes is a good approximation to the true underlying
distribution H generating his data. Further suppose that he has reason to
believe that any deviation of H from F will probably be in the direction
of another model G. A general procedure is presented for constructing an
estimator which is asymptotically efficient at both F and G as well as at
a suitably defined family of distributions lying in between. The case when
F is Normal and G Double exponential is studied in detail via both
asymptotic theory and Monte Carlo simulation (for finite sample sizes). The
estimator is shown to compare favorably againgt nine other well known

competitors. Computer programs are included.
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DIRECTIONALLY EFFICIENT ROBUST ESTIMATORS
OF LOCATION VIA EXPONENTIAL EMBEDDING

*
Wei~Yin Loh

1. Introduction

In robust estimation of the center of a symmetric distribution, we
usually assume that we have a parametric model F (e.g. Normal location-scale
family) which we hope is a good approximation to the true underlying
distribution, but we do not assume it to be exactly right. A robust estimator
is then desired, i.e. one which is efficient, or nearly efficient, at F and
has reasonably good efficiency in a neighborhood of F. 1In the case that F
is Normal, the neighborhood is quite often taken to consist of all symmetric
distributions with tails ranging in thickness from the Normal to the Cauchy.
Typically no particular distribution in the neighborhood (other than F) is
preferred over the others, i.e. we do not require the estimator to be more
efficient at some distributions than at others.

In this paper, the case is considered where the statistician has reason
to believe that, if the true distribution were to deviate from F, it would
Aprobably {(but not definitely) be towards a heavier-tailed model G. 1In such
circumstances it would be desirable for the estimator to possess high, if not
optimal, efficiency at G as well. Gastwirth (1966) and Crow and Siddiqui
(1967) have studied this problem when G consists of one or more parametric
families. Both these papers suppose it is known that the population sampled

belongs to a set F of parametric families, like {Normal, Double
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exponentiall or {Normal, Double exponential, Cauchy}l. They then search for an
estimator, within various classes (like R~ and L- estimators), which has
maximin efficiency over F. Since maximin estimators emphasize safety over
efficiency however, they may be efficient (or even asymptotically efficient)
nowhere in F.

If asymptotic efficiency were the only criterion, of course solutions to
our problem are avéilable from the class of fully adaptive estimators (see
e.g. Andrews et al. (1972), sacks (1975), Stone (1975) and Beran (1978)),
these being constructed to be asymptotically efficient at all sufficiently
smooth distributions. But since these estimators make no use of our knowledge
of F and G, it seems plausible that a semi-adaptive procedure which uses
this information explicitly may perform bhetter (at F and G) for small
samples. Examples of such procedures have been suggested by Hogg and
others. Hogg (1967) proposes an estimator which chooses among the sample
mean, median, 25% trimmed mean, and mid-range according to the sample
kurtosis. This estimator is asymptotically efficient at the Normal, Double
exponential and uniform distributions, and empirical evidence (see e.q.
Andrews et al. (1972) and Wegman and Carroll (1977)) suggests that its small
sample performance at these distributions is better than many of the blatantly
adaptive procedures. Further it is robust since it yields the sample median
or trimmed mean whenever the sample kurtosis is large. Another procedure that
applies maximum likelihood or Bayes rule to first select a family of
distributions from within a predetermined set and then uses the optimal
estimator for that family is congidered in Hogg et al. (1972).

In this paper we introduce a general method for constructing a semi-
adaptive estimator which is asymptotically efficient at any two parametric

families F and G as well as at a family of distributions lying between
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them. The definition of this family and an explanation for its relevance are .f
given in Section 2. Unlike the Hogg-type procedures which are based on :.3
trimmed means, our estimator is more like an M-estimator since it is the :j
maximum likelihood estimator (MLE) corresponding to a genuine likelihood

function. If the tails of F and G span a wide enough range, we expect )
this estimator to bhe robust. The particular example when F is Normal and ;j
G Double exponential is studied in detail in Sections 3-5. Section 3 derives ?
the likelihood equations, section 4 deals with the asymptotic properties of

the estimator, and section 5 contains empirical evidence on its small sample

performance compared to some well-known adaptive and nonadaptive competitors.
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2. Some embedding methods

Let F = {c-1f(o-1(x-9)); - ¢(0 <®w, g >0} and G = {‘r-‘q(T-‘(x-—a));
- ¢ 0 <=, T >0} be two location-scale families of densities on the real
line. We assume that f(x) and g{(x) are symmetric about 0 and want an
estimator a of 8 that is asymptotically efficient at F and G as well
as those densities in between. There appears to be no universal agreement on
what is meant by the set of distributions "between" two families. We will
define it in the following way. let H be a comprehensive parametric model
parametrized by an additional parameter A € [k1,X2] such that A = A

1
corresponds to F and A = Az corresponds to G. Then all distributions
in H that are not in F or G will be considered as being in-between
and G. 1In order for the estimation problem to be well-defined, the densities
in H will have to be symmetric. Once a suitable embedding H is found, we
will define 3 as the MLE over H of the center of symmetry 8.

There are at least three approaches to constructing such an embedding.
The linear embedding consists of densities defined by

h(x;0,0,T,\) = 0-1(1-X)f{o-1(x—9)} + r-1kg{r-1(x-e)};
(2.1)
~-® < Q9 <Cw; g, T >0; 0C A< |

This construction has the advantage of being simple and allowing a physical
interpretation for A as a prior probability. Unfortunately, since ¢ and
T are unknown parameters, the likelihood function is unbounded at each data
point  Xqseeeix, for n ? 2. Hence MLEs do not exist. This difficulty can
be avoided by including the restriction that ¢/t = constant. But besides
drastically diminishing the size of the embedding, this seems to make the
choice of the constant artificially important.

Another approach is to have the members of H be “F in the middle

and G in the tails", i.e. for k > 0 define
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o Veto N (x-8)) , Ix-B] < X

h(x; 0,0,1,k) =
1-19(1-1(x-6)} , otherwise .

The M-estimator of Huber (1964) used this construction with F Normal and G
Double exponential, and the additional requirement that h be continuously
differentiable in x. The problem of estimating all the parameters
(8,0,7,k) via maximum likelihood does not appear to have been attempted,
although Bell (1980) has investigated the question of adaptively choosing k
from the data using the criterion of minimum estimated asymptotic variance.

A third construction is the exponential embedding where

h(x; elol‘rlx) = C(Uofcx)f1-x{0-1(x‘e)}gX{T-1(X‘e)} H

(2.2)
-2 ¢ 0 <C®; g,T >0; 0K AC 1 ;
and c(o0,T,A\) is a scaling factor. Cox (1961), Atkinson (1970), Brown (1971)
and Weerahandi and Zidek (1978) have used this in various contexts. Recently,
using the Kullback-Leibler information number as a measure of statistical
distance, Loh (1983) showed that as )\ ranges from 0 to 1, ¢the distri-
butions represented in (2.2) in fact constitute the shortest path between f
and g in distribution-space. This result offers a justification for claim-
ing that (2.2) yields densities in between F and G.
We adopt the method of exponential embedding in this paper and estimate
0 with its MLE 5, regarding 0, T and A as nuisance parameters. (The
fact that the nuisance parameters may not all be identifiable is not worrisome
because we are only interested in estimating 6.) It is clear that 5 is
location and scale equivariant, i.e. if we transform the data vector x to
ax + b for some constants a and b, then
8(q5+b) = as(g) +b .

-

If 6  and OG are the MLFs for © under the submodels F anada G,

the following theorem which will be used later gives conditions for 0 to lie

Y

hetween OF and OG.
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Theorem 2.1. Suppose that for each (0,7) the likelihood functions (of 8)
under F and G are unimodal. Then the MLE 8 for (2.2), when o0, T and
A are treated as nuisance parameters, always lies between GF and 66'
Proof. This follows from the assumption of unimodality of the likelihoods and
the fact that the values of SF and 8G are unchanged whether ¢ and T

are known or not.

When F is Normal and G Double exponential, the MLEs are the sample
mean x and median X respectively. These two estimators are at the
extremes of the family of symmetrically trimmed means, and the a-trimmed mean
;a is often thought of as a compromise if the true underlying distribution is
believed to have tails between those of the Normal and Double exponential. It
is interesting to note that i; does not share the property of 8 in Theorem
2.1 in this case.

Since 8 is an MLE, classical theory suggests that under regularity
conditions, it is asymptotically efficient when 0 < A < 1. When A =0 or
1, proofs of asymptotic normality are more difficult since the true parameter
vector is now a boundary point. There appears to be no general theorems for
such situations. 1In specific cases, a proof will probably depend on a
combination of the results of Huber (1967) and ad hoc arguments. Robustness
of 8 is likely to depend on the robustness of 8G if G is heavier-tailed
than F. Intuitively this is because the estimated density (2.2) will tend to
be close to some member in G if the true distribution is heavier-tailed

than G. wWe illustrate these points with an example in the following

sections.
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3. Normal-Double exponential example: likelihood equations
We study here the case when F is Normal and G Double exponential. i;
Equation (2.2) becomes —
1 2 2 »,
(3.1) h(x; 0,s,t) = c(s,t)exp{- 28 (x-8)" - tix-0]} R
( 3
where c(s,t) = 2 sp(t/8)/8(-t/8) if s8,t > O b
o
ﬂ s/(20)1/2 if t=0,850
L t/2 if s=0,¢t>0
-
!_$
and ¢( ), &( ) are the standard Normal density and cumulative distribution .
functions. The scale factor c(s,t) is defined on D = _[F
3

[(0,#) x [0,2)\ {(0,0)}. It can be checked (using e.g. (3.6) below) that
c(s,t) 1is continuous on D. Clearly (3.1) yields F when t =0 and G
vhen s = 0.

Let 3, ;, ; be the MLEs for 6, s, t. The following theorem whose
proof is sketched in the Appendix shows that the three-parameter minimization
problem of determining the MLEs may be reduced to one involving only one
parameter in [0,=),

Theorem 3.1. lLet (x1,..-.xn) be an ordered sample of size n and ;,

; = (x[(n*1)/2] + x[n/2+1]) be the sample mean and median respectively (here
{ ] is the greatest integer function). Suppose that X<X. T n is even
and Xn/2 < ;, then a = x. Otherwise the minimization of the likelihood
corresponding to (3.1) can be reduced to the following one-dimensional
problem: Let v = ¢t/s, w = t/s2 and let ki, be the largest integer k such
that x, < x. Define to be .2 set of integers {ko,...,[(n-1)/2]} and
divide the interval [0,®) into the subintervals {[p1k'92k]' [q1k.q2k1;

k € N} where p1ko =0, U, ((n-1)/2] = and for k = ko + 1,...,[(n=3)/2],

' -7-
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-1 - -1
= n(n-2k) (x ‘-x){(n—Zk) (% 44 i k41

Pax K+

-1 2,-1/2
+n Z(xi xk+,) }

(3.2) T = P2k -

= n(n-2k-2)-1(x

- -1
k+1-x){(n-2k-2) (x

9y k+1-x)£|xi-xk+1l
2,.-1/2
} /

-1
+n E(xi-xk+1)

’

P, k+t = 92 -

For each k @ N, define for v € (0,») the function

- 4 k
(3.3) £ (v) = log(w/v) + log &(-v) + v2(2nw2) 1{2 (xi-e-w)2
1

¢ 2
+ ) (x,-0+w)7}, if ve [p,

q ]
k+1 2k
\ 0 , otherwise
where
{1) for ve [p1k'92k]’ =
-1 2 k- -2 4 k - 2 -1 2 - 2,1/2
=n v ) (x=x,) + {n v (] (x=x )} + n" vI(x %)) '
1 i 1 i i
(3.4) 6 = x + w(n-2k)/n ;

(ii) for v € [q1qu2kll

1 2

w= (2n)" I

2 1, =2 4
v lei xk+1| + E{n v (Slxi X+

-1.2. _ 2,1/2
+4n v E(x1 xk+1) } .

(3.5) 0 = xk+1 .

*
Let f(v) = z fk(v) and v minimize f(v) over [0,%). Then the
keN

corresponding to v (given by (3.4) or ('.5)) is the MLE for 8 for the

density (3.1).
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We are unable to prove or disprove that 6 is a.s. unique, although our

experience with numerical examples suggests that this is the case. Should
multiple roots occur, however, we can choose the root closest to the sample
median. In view of the theorems in the next section, this will guarantee a
consistent sequence of roots. To implement the method on a computer, we note
that if * 1i i [
a
v es I 1, ((n-1) /21"

exactly since 0 is independent of it. So we need only determine whether

®), its value need not be computed

*
v lies in this interval. This search is greatly assisted by the following

approximat.-n which effectively reduces the interval to a finite one.

2
Theorem 3.2. Let S, = lei-xk+1| and 52 = Z(xi-xk+1) where k =
((n=1)/2]. If v > max{2/2, 25;1/n82, q1k}, then £(v) - log(S1/(n/3;)) -1 -

-2 2 -4 2.2
v {nsz/(251) - 1} is bounded above by v {5/2 + (7/12) (ns,/S,) } and below

by -v'4{(3/z>(ns?_/sf)2 - (x/2)(1 - n/8)}.

Proof. Expand f(v) in powers of v? using Taylor's series and the

inequalities (see e.g. Johnson and Kotz (1970) p. 279): for x > O,
(3.6) {x2+8) Y2 4 3%} /4 < p(x) /0 (=x) < {2 4 -

A Fortran program that uses these two theorems is given in the
Appendix. It uses a modified version of the function minimization routine
FMIN in Forsythe, Malcolm and Moler (1977) and calls IMSL subroutines MDNORD

and MSMRAT to compute &®(x) and Mill's ratio.
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4. Asymptotics

It is shown in this section that © is asymptotically efficient when the

model (3.1) is correct. If (0,s,t) is an interior point of the parameter ]
[ ]

space, standard methods can be used to prove consistency and asymptotic j

efficiency of (0,s,t). However these methods are inapplicable when (6,s,t)

is a boundary point, as when the true underlying distribution is Normal or -
»

Double exponential. For these cases we use a thoerem in Huber (1967) to prove

consistency and then resort to ad hoc methods to arque asymptotic efficiency.

Incidentally, consistency of 6 alone is a consequence of Theorem 2.1 since
it is sandwiched between X and x both of which are consistent under
(3.1). Consistency for the other MLEs (as well as 8) is shown in the
following theorem.

Theorem 4.1. 8, ; and ; are consistent estimates of 0, s and t when
(3.1) is correct.

Proof. The proof consists of checking that the conditions in Theorem 1 in
Huber (1967) holds. These are called assumptions (A1) - (A5) in the paper to

which we refer the reader for a precise statement. Let £ = (-»,®) x D,

where D is defined in Section 3. Let a = (8,s,t) € §, and a, =

,t.) be the parameter vector corresponding to the true distribution.

(8yr594%g

Following the suggestion in Huber (1981, p. 130), we take pairs Yo =
E.‘ (xzn_1,x2n) of the original data (x1,x2,...) as our new observations and
{ define

¢ 1
ply,a) = =2 log c(s,t) + 2

52{(x1-9)2 + (x2-9)2}
+ t{|x1-9| + lxz-el} .

Assumption (A-1) is immediate, and (A-2) follows from the continuity of

p(y,a) as a function of a. Let af(y) = p(y,uo) and note that

E{p(y,a) ~ a(y)} 1is a Kullback-lLeibler information number; hence it is non-

IR e A 0 0 BB an se se ',v—“‘v, T
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negative and well-defined (possible 4+®) for all a € 1, and vanishes only
when a = a,. (Here all expectations are taken with respect to ao.) This 4
implies assumptions (A-3) and (A-4). ;i
Finally to verify (A-5), let = be the point at infinity in the one- j
point compactification of Q. In our context (A-5) may be stated as follows: ) ;
There is a continuous function b(a) > 0 such that ;i
(1) inflp(y,a) - a(y)}/b(a) > h(y) for some integrable h, -
a .
(i1) 1im inf b(a) > 0, and ]
" Sgud ;4

(111) E{lim inf [p(y,a) - a(y)]l/bla)} > 1.
are

Take b(a) to be identically 1 for all a. Then (ii) is immediate and (i)

P A Py l"('“.‘ :' "

w0y
a4 3

will follow if we show that inf p{(y,a) 1is integrable. For each s and ¢,
a

p(y,a) is minimized when 6 = (x,4x,)/2. Therefore writing z = Ixq=x51/2,

we gee that

2 2
(4.1) inf p(y,a) = inf (-2 log c(s,t) + s z + 2tz} .
a S,t

Now suppose (s,t) 1is an interior point, and make the change of variable u
t/s. The expression in parenthesis on the RHS of (4.1) can be rewritten as

2 2
(4.2) H(z,s8,u) = -2 log 8 + u2 + 2 log ®(-u) + 8 z + 28uz .

For fixed u this is minimized when 23z = (\12‘0-4)1/2 = u, Substituting this

for s in (4.2) and differentiating with respect to u yields

dH/du = u - 2¢(u)/8(-u) + (u+a)'/?

which is positive for all u (see Birnbaum (1942)). We therefore conclude
that inf H(z,s,u) is attained at u =0 and s = 2-1. Hence inf p(y,a) =
a

2 log z + constant, which is clearly integrable, and so (i) obtains. To

verify (iii) it suffices to check that 1lim inf p(y,a) = w». There are two
[vE 4 ]
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cases to consider, namely (a) |0], s, t + ®, and (b) |8] + », s,t + 0. 1In

both cases however, we have

-1
ply,a) = O(- log s + 3282/2 + ¢tl8]) if ts + constant
2,2 -1
O(- log t + 8067/2 + ¢]|6]) if ts =+ =

Obviously 1lim inf p(y,a) =« in either case. Thus (iii) is verified and the

proof is ended.
We are now ready to deduce asymptotic normality and efficiency.

Theorem 4.2. 8 is asymptotically efficient when the underlying

distribution F has a density given by (3.1).
Proof. When the true parameter vector (8,s,t) is an interjor point of the
parameter space, the asymptotic efficiency of the MLEs follows easily from the
standard theorems (see e.g. Lehmann (1983)). We therefore only prove the
result when either s or t is zero.

(i) F is Normal. By the preceding theorenm, ; E 0 and ; E s for some
s > 0. It is clear that equations (3.4) and (3.5) together define a monotone
function of v in [0,®). Therefore

/n 18-%| < :lln-2k|//; = tln-2x1/(s%/m)

for some k between ko (defined in Theorem 3.1) and n/2. Here ln-2k0|
is the difference between the number of deviations {xi-;} with positive
signs and the number with negative sign. Since ln-Zkol = OP(/;) (David
(1962)), we see that vn |8-§| < ;ln-Zkol/(;zlg) £ o. Hence 5 has the same

asymptotic variance as x which is efficient.

(ii) F_is Double exponential. We assume without loss of generality that

X < x and again use the notation of Theorem 3.1. We know from Theorem 4.1

P P
that s+ 0 and t » t > 0, Therefore Vv = t/s + ®», Let kn(x) be the

largest integer k such that 5 {defined in (3.2)) satisfies Ay < V.

-12~
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Then k, € k < n/2 and n-2k; = oP(/;) (see Brown and Kildea (1979)). So

0 0

(n-2kn)//; converges in probability to some random variable Y. We will show

that Y is degenerate at 0. First observe that /nlxk -x| € /n|x-x] =

K n
-1 = -1 - P
0,(1) and n z (x=x,) = (2n) I|x.,-x| + constant. Next note that gq
can be written as
1 - 1 k1 _
Q= n(a=2k=2)" (x, =) /{2(n=2k-2)" (x, A =x) 2 (x=x)
A T L A
i
“ P 13 .
Since v + ®, this yields Dy + o, This implies that Y = 0. Therefore
n ~ ~ )
k /n =2 4R  uhere Vn R ? 0. Since x ¢ ® < x, it follows that 6 has
n 2 n n

n
the same asymptotic variance as x (Lehmann (1983), Chapter 5, Problem 3.5),

The next theorem shows that for heavy-tailed distributions like the

Cauchy (or Tukey's "slash") 0 is asymptotically equivalent to the median.
It is therefore robust against these distributions.

Theorem 4.3. Agsume that the true underlying density has tails of order

~

le-z. Then © has the same asymptotic variance as X.

Proof. Assume as before that the x's are ordered and use the notations of

Theorem 3.1. Brown and Tukey (1946) showed that for such distributions

-1

- -1 2
(4.3) X = Op(1)c n leil = OP(1), n EXi = Op(n) .

It is easy to check that
A_2 _1 ~ 2 -~ -~ -1 -~
s = Op(n E(xi 0)7), v/s Op(n lei—el) .
Since 0 1lies between X and §, (4.3) implies that v = Op(/;). Now
1 -
choose {kn} such that kn =3n + an where vn Rn + 0. This ensures that
the knth order statistic X, has the same asymptotic variance as ;.
n

Putting k = kn in (3.2) we see also that

-13-
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- -1 - - -1 - =1
= (Vn Rn) (xk ~x)/{(/n Rn) (xk -x){n tlxi-xknl)

9,k
n n n

Dl NS

2,172
h

n

+ n-2 t(xi-x

which in view of (4.3) is at most OP((/; Rn)-1)' Clearly, we can choose

k so that /; R + 0 and nR + o, Then for large n, d3 . <<V with
n n n '"n

high probability. This yields X < 0 < X and hence the result.
n

-14~
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S. Small-sample behavior: sensitivity curve, breakdown bounds and l
Monte Carlo '

This section contains computer-generated results on the small-gsample
- »
performance of 0. Figure 5.1 shows its stylized sensitivity curve for sample A;'
N size 20. This is seen to be very similar to that for a trimmed mean, and may

be compared with those of other estimators given in Andrews et al. (1972),

[ ]

The curve is obtained by starting with a pseudo-sample of 19 expected normal .

- A

order statistics, adding to this a moving point x, evaluating 0 from the ]

. " \
. combined sample, and plotting 20 times O as a function of x. _
. [

PPUT TR Ny §

Figqure 5.1. Sensitivity curve

Andrews et al. (1972) also used the concept of breakdown bounds to get
gsome idea of the tolerance of an estimator to extremely aberrant data. For

each sample size n, j sample points are taken to be 100, 200,...,3j00 and




the remaining n-j points are taken to be the n-j expected normal order

statistics from a sample of size n-j. The numbers in Table 5.1 give the

Table 5.1. Breakdown Bounds

Largest % of contamination such that estimator <«

Sample size n

3.

5 10 20 40
0 20 40 40 45
x 0 0 0 2.5
§.10 0 10 10 10
;.zs 20 20 25 25
X 40 40 45 47.5
JOH 40 20 20 22.5
TAK 20 10 15 17.5
JAE 20 20 25 25
HG1 20 30 3% 37.5
HG2 40 30 35 37.5

largest j for which the estimator is less than 3 (the estimator is said to

break down if it exceeds 3). For comparison the breakdown bounds for the

following estmators are also given in the table:

Nonadaptive: x = gample mean
;.10 = 10% symmetrically trimmed mean
§.25 = 25% gymmetrically trimmed mean
; = gample median

-16-
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Adaptive: JOH = John's adaptive estimator
TAK = Takeuchi's adaptive estimator

JAE = Jaeckel's adaptive trimmed mean

hatl SRR

HG1
} Hogg-type adaptive estimators.
HG2

The definitions of JOH, TAK and JAE are given in Andrews et al. (1972) under
the same names. HG1 was first suggested by Hogg (1974) and is defined to be
§.125 if 0 < 1.81, E.zs if 1.81 < Q < 1.87, and §.375 if Q > 1.87.
Here Q is the ratio {B(.2) - z(.Z)}/(G(.S) - I(.S)}, where U(B) and

L(B) are the averages of the largest and smallest [(n+1)B] order statistics
regpectively. The estimator HG2 is a modification of HG1 to make it
asymptotically efficient at the Normal and Double exponential distributions. ;;
It is defined to be X if O ¢ 1.81, X if 1.81¢ 0 < 1.87, and X if

.25
© > 1.87, From Table 5.1 it is clear that for n = 10, 20 or 40, the

-~

breakdown bounds for © are superior to all the others except those for the

sample median.

Monte Carlo estimates of the variances (multiplied by n) of each of
these estimators are given in Tables 5.2 - 5.4 for n = 10, 20 and 40 and
the following distributions: (i) N(0,1) (Normal with mean 0 and variance
1), (i1) the density (2.2) with f = N(0,1), g = Double exponential with
density % e-|x|, and A = %. (iii) Double exponential, (iv) contaminated
Normal: 90% N(0,1) + 108 N(0,100), and (v) Cauchy. The first three
distributions are picked for the study because they span the range in which
a is efficient. Distributions (iv) and (v) are included to test its

robustness properties. Estimates of the standard errors are given in

parentheses, and the minimum estimated variance for each distribution is

underlined. The simulations were done on a VAX/11/750 computer. The IMSL

-17-
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generator GGUW was used to generate uniform random numbers and the Box-Muller
transformation applied to produce normal deviates. The Princeton swindle was
used whenever possible. The number of replications ranged from 1000 - 5000.

It is immediately clear from these tables that in none of the sample
size~distribution combinations considered does 8 beat all of the other
estimators. To analyse them further, we can look at deficiencies. These are
defined to be the ratios (estimated variance)/{minimum estimated variance),
where the minimum is taken over the ten estimators compared. The coded
deficiencies are shown in Tables 5.5 - 5,7. Only deficiencies greater than
1.5 appear as digits or x's. All the estimators (with the possible exception
of the mean and median) seem to be equally good at the Normal and Double
exponential distributions. The excellent performance of TAK at distribution
(ii) also stands out.

Finally to compare the relative performance of the estimators over all
situations combined we follow Tukey's (1979) suggestion to look at maxima and
sums of deficiencies. For each sample size, let A(i) and B(i) be the maximum

ith estimator over a set of distributions. The

and total deficiency of the
estimators are then ranked according to the values of {A(i)} and ({(B(i)}.
These two criteria are denoted by ;mininax" and "total" in Tables 5.8 - 5.9
where the estimators are ranked first for distributions (i) - (iii), and then
again for all five distributions.

The following points may be made from these two tables:
(a) For n =20 or 40, TAK and JOH appear hard to beat. For n = 10
however, the picture is quite different. Here JOH is somewhat below average
when only distributions (i) - (iii) are considered, and TAK has a poor showing

for all distributions combined. The reason may be that these two estimators

are over-adapting at this sample size.

-18-
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(b) There seems to be little to choose between 3 and HG2. Both are ’
consistently good over all three sample sizes.
(c) HG2 is superior to HG1 for the distributions considered. :__
(d) The adaptive trimmed mean JAE trails 3 and HG2 almost every time. .‘
(e) None of the nonadaptive trimmed means (including the mean and median) are
competitive. E
The above results encourage us to feel that for the kind of situation .<
described in the introduction, our proposed procedure will produce viable g
estimators. - 4
b

g
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Table 5.2. Variance x(n=10) —
Standard errors in parentheses .
N(0,1) A= % DEXP 10% 10N Cauchy f;
6 1.069 0.416 1.59 1.98 5.09 Y
(.004) (.009) (.02) (.03) (.16) .
x 1.000 0.347 1.99 10.17 768180.0 o
(.007) (.04) (.40) (73179.0) ;j
;.10 1.051 0.460 1.61 2.78 14.63 Efé
(.002) (.009) (.03) (.13) (3.51) -]
X s 1.157 0.630 1.41 1.57 4.15
(.006) (.011) (.03) (.02) (.15)
x 1.382 0.874 1.46 1.74 3.36
(.015) (.015) (.02) (.20) (.08)
JOH 1.194 0.445 1.62 1.82 4.38
(.007) (.010) (.03) (.19) (.23)
TAK 1.048 0.307 1.71 2.62 18.55 a2
(.002) (.007) (.03) (.19) (5.42) 2
JAE 1.081 0.428 1.56 1.87 6.53 ;
(.004) (.009) (.02) (.13) (.53) s |
HG1 1.119 0.513 1.48 1.67 4.18 ;ff
(.005) (.010) (.02) (.06) (.18) ;i;
HG2 1.094 0.411 1.60 1.91 4.73 l..
(.008) (.009) (.02) (.16) (.25) R
1
o4
R
-20- ‘
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Table 5.3. Variance x(n=20)
N(O0,1) A= -21 DEXP 10%10N Cauchy
o 1.074 0.373 1.46 1.97 3.41
(.005) (.008) (.02) (.02) (.09)
x 1.000 0.349 1.92 11.40 19921.0
(.007) (.04) (.41) (14362.0)
;.10 1.056 0.476 1.52 2.08 7.81
(.002) (.009) (.03) (.08) (.40)
X .6 1.190 0.689 1.30 1.52 3.27
(.008) (.013) (.03) (.01) (-14)
X 1.494 1.012 1.31 1.83 2.79
(.028) (.018) (.02) (.02) (.06)
JOH 1.127 0.300 1.43 1.44 2.88
(.005) (.008) (.02) (.01) (.09)
TAK 1.048 0.218 1.55 1.42 3.70
(.002) (.006) (.02) (.02) (.16)
JAE 1.102 0.404 1.41 1.48 3.58
(.005) (.009) (.02) (.01) (.12)
HG1 1.121 0.519 1.35 1.58 2.85
A (.005) (.010) (.02} (.06) (.08)
E! HG2 1.072 0.376 1.47 1.72 2.98
8 (.007) (.008) (.03) (.02) (.09)
4
jj =21~
;,
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Table 5.4. Variance x(n=40) __3'

)

% DEXP 10%10N Cauchy

0.353 1.31 1.95 2.91 I

(.007) (.02) (.02) (.05) ' |

0.350 1.99 10.49 235438.0 s

(.007) (.05) (.33) (118967.0) ‘3

0.488 1.51 1.59 6.14 '
(.010) (.04) (.03) (.20)

0.727 1.25 1.50 2.89 _Yj

(.014) (.03) (.01) (.06) &

1.166 1,23 1.87 2.62 4

(.021) (.02) (.02) (.04) 5

0.217 1.27 1.43 2.50 F:

(.005) (.02) (.01) (.06) -]

)

0.139 1.42 1.35 2.73 ‘
(.004) (.02) (.01) (.07)
0.362 1.36 1.47 3.06
(.008) (.02) (.01) - (.08)
0.528 1.27 1.61 2.46
(.010) (.02) (.02) (.05)
0.356 1.36 1.74 2.57
(.007) (.02) (.02) (.05)
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Table 5.5. Deficiencies of estimators (n=10) o

Variances divided by minimum variance among 10 estimators rounded —“.

to nearest integer. One's are suppressed, numbers > 9 are coded x. o

Normal A= -;- DEXP 10%10N Cauchy 2

. .

0 . . . . 2 0 |

- -]

X . . . 6 x "

x'1o . - - 2 4 j

X 55 . 2 . . 2 .:

~ 4

x L] 3 L ] L) 3 L

JOH . . . . . i

A TAK . . . 2 6 '1
. JAE . . . . 2
HG1 . 2 . . 2
HG2 * . - L) L)

-23-
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Table 5.6. Deficiencies of estimators (n=20) )
R
1 -
Normal A= Y DEXP 10% 10N Cauchy 1
) ’
] . 2 . . . ]
X . 2 . 8 X 4
X.1o . 2 . . 3
x.zs » 3 L ] L] 3
X . 5 . . 5
JOH L] L] . * L]
TAK . . B . .
JAE [ ] 2 L] L] .
HG1 . 2 . . o
HGZ L ] 2 . L] [ ]
[
=
3
5
o
pe
-
&
[ .
2
- =24~
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Table 5.7.

Deficiencies of estimators (n=40)

A=

DEXP

N

%l o>

%

.10

|

.25

e

JOH

TAK

JAE

HG1

HG2

w
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Table 5.8, (1) = (iii)
n Criterion 1 2 3 4 5 6 7 8 9 10
10 Minimax TAK HG2 6 JAE X JOH X 0 K61 X 25 X
Total TAK 0 X HG2 JAE X ;o JOH HG1 X 25 X
20 Minimax TAK JOH X ) HG2 JAE X w0 MG X . P
Total TAK JOH O HG2 JAE X X o HG1 X a5 X
40 Minimax TAK JOH X ) HG2 JAE X 50  HG1 X a5 X
Total TAK JOH O  HG2 JAE X X 50 HG1 X 25 P
Table 5.9. Ranks of estimators for all S Adists.
n Criterion 1 2 3 4 5 6 7 8 9 10
10 Minimax HG2 JOH 8  HGI JAE X 25 X X 10 TAK X
Total HG! HG2 JOH 9 X .5  JAE X X w0 TAK X
20 Minimax TAK JOH ©  HG2  JAE HGY X 10 X 25 X X
Total TAK JOH HG2 JAE 9 HG1 X 25 X 10 X X
40 Minims TAK  JOH 0 HG2 JAE X 10 HG1 X 25 X X
Total TAK JOH HG2 JAE ) HG1 X 10 X 25 x X
-26—
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Appendix
Proof of Theorem 3.1. Llet (x,,...,xn) be an ordered sample of size n such

that ; < ;. let v=¢t/8 and w = t/nz. Then (3.1) can be rewritten as

hix; 0,v,w) = {2 2w wvr'Q(-v)}-‘exp{- % vzw-z(lx-el + w)2} '
~® <8 <Cce , ywd>0 .,

First observe that if n is even and Xn/2 < ;, then 6 = x. So for n
even, we need only consider the case when x < xn/2' For fixed v and w,
the likelihood is maximized by that integer k and 0 satisfying

(A.1) ‘i <8< X 1

n n
which minimizes ) (xi-e)2 + 2w Z lxi-Gl. It is clear from the assumptions we
1 1
have made and Theorem 2.1 that 2k < n. This gives
0= x + win-2k)/n if w e Ik

(A.2)

xk*, if we Jk

where Ik is the interval [{n(ku;)/(n-zk)}+, n(xk*1-;)/(n-2k)] and
[n(xkﬂ-;)/(n-zk), n(xw-i)/(n-zx-zn if n-2k=-2>0

(n(x, ’-;)/(n-ZR),.) if n-2k-2¢<0 .

+

Now for fixed v, and (6,x) given by (A.2), it can be verified that there

is a unique w that minimizes the likelihood. This w is given by

k k n -
n W2 Yix=x,) + {n-zv‘(Z(x-x 1% + a7 Tix 01V i wer
1 i 1 i 1 i k
w-
n n n
=12 1,.-2478 2, , =12 2,172
(2n) v yilxi xk+1| +3 {n ‘v (%Ixi xk*1|) +4n v 21()(i xk*1) }

if we Jk .

@

or
'

l."."‘
A y

lacandh

| 4,fr:_;'.k,

-
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Inverting these equations yields the intervals {[plk'ka]' [q1k'q2k]’ 1
k = koo---o[(n-')/zl} given in (3.2). :

-

)

. R
PPN WP Y WL

v
PR LI RAY VoY
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Fortramn programs

SUBKOUT INE TSUR(XDATA,X,N,TOL,THETA)
XDATA IS AN N-DNIMENSIONAL VECTOR CONTAINING THE ORDERED X-VALUES
X IS AN N-DIMENSIONAL WORK VECTOR
TOL 1S THE PRECISION REQUIRED IN FMIN
THETA CONTAINS THE COMFPUTED MLE

IMPLICIT DOUERLE PRECISION (A-H,0-2)

LOURLE PRECISION XDATA(N) ,X(N),VL(2,50),VEK(2,50)

DOUBRLE PRECISION V0(2,50),55(50),5A(50),S5K(50),FV(2,50)

COMPLEX ZSM,ZLG

LOGICAL GCASE

COMMON D'T1,KN,L[RS,DKK

EXTERNAL F1l,F2

DATA SQRT8/2.8284271250h0/

[‘ RN=DELE(N)

. NHALF=N/2

¢ NHF1=NHALF+1

[ M=(N-1)/2 .

» IFLAG=N-2ANHALF 1

D0 5 I=1,.N

X(I)=XDATA(I)

$=0.0

T1=0.0

T2=0.0

0o 10 I=1,NHALF

T1=T1+X(NHP1-1)

T2=T2+X(NHALF+I)

10 S=G3+X(NHP1-I)AA2+X(NHALF+T) 442
IFCIFLAG .EG. 0) THEN
XMED=0.5k (X (NHALE) +X (NHF1))
ELSE
XMED=X(NHP1)

T2=TA+X(N)

S+ X (N) kX2

END IF

XRAR=(TI+T2) /KN
AX2=S/KN

TEMP=XRARAA2
XVAR=AX2-TEMP
SCEN=C-RNATFEMPE

iF(XBA% .EQ. AMED) THEN
THETA= XRAK
GCASE=.FALSE.

50 TO 700

ENDI IF

IF(XKAR .LT. XMED) THEN
GCASE=.FALSE.

ELSE

no 20 [=1,NHALF

- TEMP=-Y( I

@ Y(I)==Y ' N-{+1)

o 20 X{N-TI+1)=TEMF
TEATFLAG LER. 1Y X(NHP1 = X (NHPI)
GOARE=.TRUE,

YEAR=-XRAR

P S RS S

s s NoNy
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30

S50

60

70

80

100

210

END IF

KO=NHALF

IF(X¢(KO0) .LE. XEKAR) GO TO 35
KO=KO-1

G0 TO0 30

IF((IFLAG .EQ. O0) .AND. (KO .EQ. NHALF)) THEN
THETA=XBAR

G0 TI0 700

END IF

§120.0

D0 50 I=K0,1,-1
S1=XBAR-X(1I)+S1

K=KO

TEMP=0.0

KP1s=K+1

VL(1,K)=TEMP
RM2K=DRBRLE(N-2%K)

AS1=51/RM2K

DIEF=X(KP1)-XBAR
UNUM=DIFFARN/RM2K

SK(K)=S1
VR(1,K)=VUNUM/SQRT(2.0ADIFEAAS1+XVAK)
VL(2,K)=VUR(1,K)

§=0.0

RO 70 I=1,K
8=S+ABS(X(K+I)-X(KP1))+ABS(X(KF1-I)-X(KF1))
CONTINUE

PO 80 I=2AK+1,N
5=5+ARS(X(I)-X(KFl))

SA(K)=S
ASO=AX2+X(KP1)A(X{KF1)-2.0AXRAR)
SS(K)=ASQARN

IF(K .EQ. M) GO TO 100
RM2KP=DRLE (N-2%K-2)
UNUM2=DIEFARN/RM2KF
VR(2,K)=UNUM2/SAQRT(DIFFAS/RM2ZKP+ASQR)
TEMP=VUR(2,K)

K=K+1

S$1=S1+XBAR-X(K)

GO TO0 60

IRS=RNASCEN
DTEMP=0.5D0ALOG(DRLEC(XVARY)
DO 210 K=KO,M

DT1=8K(K)

DRK=DIBLE(K)

AA=VL(1,K)

EB=VR(1,K)
UX=FMIN{AA,RE,F1,TOL)
Vo(1,K)=UX
EV(1,K)=F1{VUX)+DTEMP

CONT INUE
DTEMP2-LOG(5.013256TARARN)
00 220 K=KO,M-1

NT1=8A(K)

DRS=RNASS (K)

AA=VL(Z,L,K)

-30-
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220

250
260
265

@ 270

275
280

Apr 20 10:17 1983 text Page 3

BB=UR(2,K)
UX=FMIN(AA,BE,EF2,TOL)

vo(2,K)=VUX

EV(2,K)=F2(VX)-DLTEMNP2

CONT INUE

EVM=EV(1,KO0)

K1=KO

Il=1

DO 230 K=KO,M

o 230 I=1,2

IF(EVM .GE. EV(I,K)) THEN
EVM=EV(I,K)

K1=K

I1=1

END IF

IF(K .EQ. M) GO TO 235

CONT INUE

IF(K1 .EQ. M .AND. VO(1,M) .E@. VR(1.M)) GO TO 200
DT1=SA(M)

DRS=RNASS (M)

AA=UR(1,M)

BB=MAX (SQRTB,2.0ARNASGRT (DELE(ASQ))/DT1)
vo(2,M)=FMIN(AA,RR,F2,TOL)
EV(2,M)=E2(V0(2,M))-DTEMP2

I=2

K=M

IF(EVM .GE. EV(2,M)) GO T0 300
SRATIO=SS(M)ARN/SA(M) k%2
CON=LOG(SA(M)/2.506628275ARN)+1.0
A=CON-FUM

B=SKRATI0/2.0-1.0
C=0.9539460517-1.5A3RATIOAAZ

AA=EER

IE(E) 240,250,260
TEMP=5,0+7.0kSRATIOA42/6.0

VINF=SQRT (AMAX1(-TEMP/K,8,0))
YU=CON+R/VINFAA2+0.SATEMP /U INFAA4
IF(EVM .LE. (CON+B/8.0+0C/64.0)) THEN
GO TO 600

ELSE IF (FVM .GE. YU) THEN

G0 TO 300

ELSE

CALL. ZGADR(A,%,C,ZSM,ZLG, IER}

IFCIER .NE. 0) WRITE(k,A) * L[ER FKOM ZUADK=",IEK
BE=SQRT (MAX(DELE(ZSM) ,DRLEC(ZLG)))

GO TO 280

END IF

IF(A) 300,300,270

IF(A) 300,265,270

RR=-C/K

60 TL 275

CALL ZQADR(A,L,C,ZSM,ZLG, IER)

IFCIER .NE. 0) WRITE(&,%) * IER FROM ZQADR=",IER
BB=SQRT(MAX(TIRLE(ZSM) ,MELE(ZLG)))
IF(RR .LE. AA) GO TO 600
UX=FMIN(AA,RE,F2,TOL)

- Safeand oa & PO T s
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TEMP=E2(VX)-DTEMP2
IF(F2(VX)-DTEMP2 .GT. FVM) GO T0 600
300 THETA=X(M+1)
GO 10 700
600 IF(I1 .EG. 1) THEN
K=K1
V=yY0(1,K)
TEMP=VAA2/RN
TEMP2=TEMPASK (K)
WO=TEMP2+SQRT(TEMP2AA2+TEMPASCEN)
THETA=XBAR+WOA(RN-DBLE(24K))/RN
GO TO0 700
ELSE
THETA=X(K1+1)
END IF
700 IF(GCASE) THEN
THETA=-THETA
XBAR=-XBAK
END IF
RETURN
END

LOURLE PRECISION FUNCTION F1(V)
IMPLICIT DOUBLE PRECISION (A-H,0-2)
COMMON S1,REN.RS,RK

U=Vx81

D=U/SQRT(KRS)

D2=DAA2

A=SART(1.0+NAX+T

CALL MONOROC(-V,P)
F1=LOG(AAP)+0.5/AkA2+42.05x(D/A+RKA(KN-RK)AC(V/RN)%%2)
RETURN

END

DOURLE PRECISION EUNCTION E2(V)

IMPLICIT DOURLE PRECISION (A-H,0-2)

REAL RM

COMMON S1,RN,KS

A=4,0AKS

U=VA51

Y=U+SQRT (UAAD+A)

CALL MBMRAT(REAL(V) , RM, IER)

IF(IEK .NE. 0) RM=(SQRT(VAA2+8.D0)+3.0AV1/4.10
F2=LOG(Y/RM)+2.0k(LU+RS/Y)/Y

RETURN
END

UDOURLE PRECTCION FUNCTION FMIN(AX.BX,7,TOLD
C THIS IS5 A SLIGHTLY MODIFIED YERSION OF A PROGRAM RY THE
C SAME NAME IWN FORSYTHE, MALCOLM AND MOLER(1977)
DDURLE PRECISION AX,BX,F.TOL
UJLUELE PRECISION A,EB.C.D,E,EFS,YXM.+ A, K, TOLL, TUL2. UV, W
[IOURLE PRECISION FU,FV,FW,FX,X
SAUR EFS
BATA C/70.5819660113D00 7
IF(EPS .AT. 0.000) GO TO 15
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- EPS=1.00
- 10 EPS=EPS/2.00 ]
TOL1=1.0+EFS
IF(TOL1 .GT. 1.00) GO TO 10 4
EPS=SQRT(EPS) [
15 A=AX :
E=EKX
V=A+CA(E-A)
W=V o
X=V -
E=0.0 [
EX=F(X)
FVU=FX
FW=FX
- 20 XM=0.5A(A+R)
' TOL1=EFSAARS(X)+TOL/3.0 o
‘ © TOL2=2.0%TOL1 ‘ »
IF(ARS(X-XM) .LE. (TOL2 - 0.S54(E-A))) 0 TO 90 :
IF(ABS(E) .LE. TOLl) GO TO 40 SN
R=(X-W)A(EX~-FV) o
O=(X-V)A(FX-FW) ;
P=(X-V)AQ-(X-W)AR o)
Q=2.004x(Q-R) P
IF(Q@ .GT. 0.0) P=-P o
Q=ARS(Q)
R=E
E=D
30 IF(ARS(P) .GE. AES(0.S5A%QAR)) GO TO 40 ]
IF(P .LE. Q4(A-X)) GO TO 40 P-4
IF(P .GE. QAC(R-X)) GO TO 40 3
n=r/Q 3
U=X+D 3
IF((U-A) .LT. TOL2) D=SIGN(TOL1,XM-X)
IFCCR-U) .LT. TOL2) D=35[iN(TOL1,XM-X)
G0 TO 50 ,
40 IF(X .GE. XM) E=A-
- IF(X .LT. XM) I=k-
- D=CkE
S0 IFC(ARS(D) .GE. TOL1) U=X+D
IF(AES(D) .LT. TOL1l) U=X+SIGN(TOL1l,I
FU=F ()
TF(FU .6T. EX: 450 TO 6O
IF(U G5, X) a=X
IF(U .LT. X) Hk=X
V=W
FU=~FW
¢« . W=X
FWrEX
Y=U
FX=FU
GO TO 20
. )] IPCU JLT. Yo a:y
L IE(U .GE. X) R=U
IF(FY .LE. FW) GO TO 79
IT(W CER, X)) 60 TO 790
[EfFIN ,LE. Fy (G0 TO 80

X
X
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IP(V .EQ. X) GO TO 80
IF(V .EQ. W) GO TO 80
GO TO 20
70 V=i —
FV=FW 9
W=U ‘
EW=FU ]
GO TO 20 .
80 v=U ‘
FV=FU
GO TO 20 -
90 TOL2=2.0ATOL
IF(X-AX .LT. TOL2) THEN
IF(E(X) .GE. F(AX)) X=AX
ELSE IF (BX-X .LT. TOL2) THEN
IF(F(X) .GE. E(BX)) X=BX iJ
END IF
EMIN=X
RETURN
END
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